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This paper presents the method of analyzing flux density changes in the iron core as permanent magnet synchronous motor is operated 

by PWM sine wave. Large amount of harmonics are contained in the current in case sinusoidal current is created by PWM where a 

significant amount of time for analysis is required. This paper suggests a method of calculating the change in flux density of each element 

in a short time with non-linear and linear FEA based on two dimensional magneto static FEA.  
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I. INTRODUCTION 

he electric motors are usually designed to produce smooth 

torque when the current waveform conforms to a particular 

shape[1]. The PWM inverters are widely used to supply the 

particular current wave form. Closed-loop current-regulated 

PWM inverters can supply current waveforms close to the ideal 

current waveform, but there are large amount of higher current 

harmonics is mixed in the current. And to do reflect such current 

harmonics in the motor analysis, location of the rotor must be 

changed at multiple times, more than twice the number of the 

harmonic number, to conduct non-linear FEA. 

Since such analysis requires too much time, this research will 

discuss a method to analyze PWM current in a short time, using 

non-linear FEA and linear FEA concurrently. 

II. METHOD OF ANALYSIS 

Electric current provided to motor from PWM inverter 

includes higher current harmonics, which can be depicted as (1). 
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In the method suggested by this research, the analysis process 

can be largely divided by two stages. The first stage is non-

linear FEA using only the fundamental harmonic, and the 

second stage is linear FEA using all current harmonics. In the 

second stage, each element is linearized using the analysis 

results obtained in the first stage. 

A. Stage I: Non-linear FEA with  

Fundamental current wave 

As shown in (2), the fundamental harmonic includes only the 

first term of (1).  
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In this stage, non-linear FEA is conducted using (3)[1], while 

changing rotor location in certain intervals under current input 

as in (2). 
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Where μ is permeability, A is magnetic vector potential, J is 

current density and M is magnetization. In Stage I, M is always 

0 in the element at iron core. 

 
Fig. 1. Flux density variation in an element 

 

As the result of Stage I, flux density vector values sampled 

at regular intervals can be obtained in all elements, as shown in 

Fig. 1. From these values, values in between the intervals can 

be predicted using methods such as spline interpolation or 

Fourier approximation, and the predicted values are used for 

linearizing each element in the second stage.  

B. Stage II: Linear FEA with  

Harmonic Current Wave 

 
Fig. 2. B-H curve and differential permeability 
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After the analysis in Stage I, the result can be used to 

linearize each element. 

Let’s suppose a magnetic circuit, consisting iron core and 

coils. The iron core is made from a material that has single-

valued B-H curve as in Fig. 2. Let’s put the case that a random 

location within the core has field strength H0 and flux density 

B0 while currents I0 are flowing in coils. In this situation, when 

the size of the currents increases by ∆I, field strength and flux 

density is also increased by ∆H and ∆B respectively. If ∆I is 

small enough, the relationship between field strength H and 

flux density B can be assumed to be linear during the time when 

the current changes from I0 to I0+∆I.  

In equation (1), the higher harmonics I2, I3, I4… are 

significantly smaller than fundamental harmonic I1; so such 

relationship explained above is applicable. In Stage II, each 

element’s flux density obtained from Stage I is interpolated to 

linearize each element. In the analysis result obtained in Stage 

I, if an element has field strength and flux density with direction 

θ and the size of B0 and H0 at a certain time, the element can be 

linearized with a material that has differential permeability and 

residual flux density as below [1]. 
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 The relationship in above formula is shown in Fig. 2. 

Differential permeability μd can be expressed as the tangent line 

slope of B-H curve at a point when H=H0, and residual flux 

density Br can be expressed as the point where an extended line 

from the tangent line meets B axis. 

Each element’s flux density for PWM current can be obtained 

by conducting linear FEA with current described in (1) in a 

model linearized as described above. 

III. RESULTS AND DISCUSSION 

For currents consisting higher harmonics, Existing non-

linear FEA method and results obtained from the suggested 

method are displayed in Fig. 3, as example.  

As can be seen from the enlarged graph on the bottom-left 

side in Fig. 3, result of suggested method is almost approaching 

the Non-linear FEA, and computing time was approximately 

1:15 as shown in TABLE I  

More detailed analysis result will be provided and compared 

in a full paper. 

 

 
Fig. 3. Flux density variation in an element with PWM current 

 
TABLE I 

COMPUTING TIMES 

Method Computing time 

Non-linear FEA at every step 700 Minutes 

proposed method 45 Minutes 
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